Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109476, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617565

RESUMO

Glacier-fed waters create strong environmental filtering for biota, whereby different organisms may assume distinct distribution patterns. By using environmental DNA-based metabarcoding, we investigated the multi-group biodiversity distribution patterns of the Parlung No. 4 Glacier, on the Tibetan Plateau. Altogether, 642 taxa were identified from the meltwater stream and the downstream Ranwu Lake, including 125 cyanobacteria, 316 diatom, 183 invertebrate, and 18 vertebrate taxa. As the distance increased from the glacier terminus, community complexity increased via sequential occurrences of cyanobacteria, diatoms, invertebrates, and vertebrates, as well as increasing taxa numbers. The stream and lake showed different community compositions and distinct taxa. Furthermore, the correlations with environmental factors and community assembly mechanisms showed group- and habitat-specific patterns. Our results reveal the rapid spatial succession and increasing community complexity along glacial flowpaths and highlight the varying adaptivity of different organisms, while also providing insight into the ecosystem responses to global change.

2.
Sci Total Environ ; : 172263, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583623

RESUMO

The relationships between α-diversity and ecosystem functioning (BEF) have been extensively examined. However, it remains unknown how spatial heterogeneity of microbial community, i.e., microbial ß-diversity within a region, shapes ecosystem functioning. Here, we examined microbial community compositions and soil respiration (Rs) along an elevation gradient of 853-4420 m a.s.l. in the southeastern Tibetan Plateau, which is renowned as one of the world's biodiversity hotspots. There were significant distance-decay relationships for both bacterial and fungal communities. Stochastic processes played a dominant role in shaping bacterial and fungal community compositions, while soil temperature was the most important environmental factor that affected microbial communities. We evaluated BEF relationships based on α-diversity measured by species richness and ß-diversity measured by community dispersions, revealing significantly positive correlations between microbial ß-diversities and Rs. These correlations became stronger with increasing sample size, differing from those between microbial α-diversities and Rs. Using Structural Equation Modeling (SEM), we found that soil temperature, soil moisture, and total nitrogen were the most important edaphic properties in explaining Rs. Meanwhile, stochastic processes (e.g., homogenous dispersal and dispersal limitation) significantly mediated effects between microbial ß-diversities and Rs. Microbial α-diversity poorly explained Rs, directly or indirectly. In a nutshell, we identified a previously unknown BEF relationship between microbial ß-diversity and Rs. By complementing common practices to examine BEF with α-diversity, we demonstrate that a focus on ß-diversity could be leveraged to explain Rs.

3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38521984

RESUMO

Mountain glaciers are frequently assessed for their hydrological connectivity from glaciers to proglacial lakes. Ecological process on glacier surfaces and downstream ecosystems have often been investigated separately, but few studies have focused on the connectivity between the different glacial habitats. Therefore, it remains a limited understanding of bacterial community assembly across different habitats along the glacier hydrological continuum. In this study, we sampled along a glacial catchment from supraglacial snow, cryoconite holes, supraglacial runoff, ice-marginal moraine and proglacial lake on the Tibetan Plateau. The bacterial communities in these habitats were analyzed using high-throughput DNA sequencing of the 16S rRNA gene to determine the bacterial composition and assembly. Our results showed that each habitat hosted unique bacterial communities, with higher bacterial α-diversity in transitional habitats (e.g. runoff and ice-marginal moraine). Null model analysis indicated that deterministic processes predominantly shaped bacterial assembly in snow, cryoconite holes and lake, while stochastic process dominantly governed bacterial community in transitional habitats. Collectively, our findings suggest that local environment play a critical role in filtering bacterial community composition within glacier habitats. This study enhances our understanding of microbial assembly process in glacier environments and provides valuable insights into the factors governing bacterial community compositions across different habitats along the glacial hydrological continuum.


Assuntos
Ecossistema , Lagos , Lagos/microbiologia , RNA Ribossômico 16S/genética , Tibet , Bactérias/genética , Camada de Gelo/microbiologia
4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38366911

RESUMO

Methane-oxidizing bacteria (methanotrophs) play an important role in mitigating methane emissions in various ecological environments, including cold regions. However, the response of methanotrophs in these cold environments to extreme temperatures above the in-situ temperature has not been thoroughly explored. Therefore, this study collected soil samples from Longxiazailongba (LXZ) and Qiangyong (QY) glacier forelands and incubated them with 13CH4 at 35°C under different soil water conditions. The active methanotroph populations were identified using DNA stable isotope probing (DNA-SIP) and high throughput sequencing techniques. The results showed that the methane oxidation potential in LXZ and QY glacier foreland soils was significantly enhanced at an unusually high temperature of 35°C during microcosm incubations, where abundant substrate (methane and oxygen) was provided. Moreover, the influence of soil water conditions on this potential was observed. Interestingly, Methylocystis, a type II and mesophilic methanotroph, was detected in the unincubated in-situ soil samples and became the active and dominant methanotroph in methane oxidation at 35°C. This suggests that Methylocystis can survive at low temperatures for a prolonged period and thrive under suitable growth conditions. Furthermore, the presence of mesophilic methanotrophs in cold habitats could have potential implications for reducing greenhouse gas emissions in warming glacial environments.


Assuntos
Methylocystaceae , Solo , Methylocystaceae/genética , Temperatura , Camada de Gelo , Temperatura Baixa , Metano , Água , DNA
5.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38378869

RESUMO

Different types of inlet water are expected to affect microbial communities of lake ecosystems due to changing environmental conditions and the dispersal of species. However, knowledge of the effects of changes in environmental conditions and export of microbial assemblages on lake ecosystems is limited, especially for glacier-fed lakes. Here, we collected water samples from the surface water of a glacier-fed lake and its two fed streams on the Tibetan Plateau to investigate the importance of glacial and non-glacial streams as sources of diversity for lake bacterial communities. Results showed that the glacial stream was an important source of microorganisms in the studied lake, contributing 45.53% to the total bacterial community in the lake water, while only 19.14% of bacterial community in the lake water was seeded by the non-glacial stream. Bacterial communities were significantly different between the glacier-fed lake and its two fed streams. pH, conductivity, total dissolved solids, water temperature and total nitrogen had a significant effect on bacterial spatial turnover, and together explained 36.2% of the variation of bacterial distribution among habitats. Moreover, bacterial co-occurrence associations tended to be stronger in the lake water than in stream habitats. Collectively, this study may provide an important reference for assessing the contributions of different inlet water sources to glacier-fed lakes.


Assuntos
Lagos , Microbiota , Humanos , Camada de Gelo , Tibet , Água
6.
Appl Environ Microbiol ; 90(3): e0224223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38358247

RESUMO

The extensive accumulation of polyethylene terephthalate (PET) has become a critical environmental issue. PET hydrolases can break down PET into its building blocks. Recently, we identified a glacial PET hydrolase GlacPETase sharing less than 31% amino acid identity with any known PET hydrolases. In this study, the crystal structure of GlacPETase was determined at 1.8 Å resolution, revealing unique structural features including a distinctive N-terminal disulfide bond and a specific salt bridge network. Site-directed mutagenesis demonstrated that the disruption of the N-terminal disulfide bond did not reduce GlacPETase's thermostability or its catalytic activity on PET. However, mutations in the salt bridges resulted in changes in melting temperature ranging from -8°C to +2°C and the activity on PET ranging from 17.5% to 145.5% compared to the wild type. Molecular dynamics simulations revealed that these salt bridges stabilized the GlacPETase's structure by maintaining their surrounding structure. Phylogenetic analysis indicated that GlacPETase represented a distinct branch within PET hydrolases-like proteins, with the salt bridges and disulfide bonds in this branch being relatively conserved. This research contributed to the improvement of our comprehension of the structural mechanisms that dictate the thermostability of PET hydrolases, highlighting the diverse characteristics and adaptability observed within PET hydrolases.IMPORTANCEThe pervasive problem of polyethylene terephthalate (PET) pollution in various terrestrial and marine environments is widely acknowledged and continues to escalate. PET hydrolases, such as GlacPETase in this study, offered a solution for breaking down PET. Its unique origin and less than 31% identity with any known PET hydrolases have driven us to resolve its structure. Here, we report the correlation between its unique structure and biochemical properties, focusing on an N-terminal disulfide bond and specific salt bridges. Through site-directed mutagenesis experiments and molecular dynamics simulations, the roles of the N-terminal disulfide bond and salt bridges were elucidated in GlacPETase. This research enhanced our understanding of the role of salt bridges in the thermostability of PET hydrolases, providing a valuable reference for the future engineering of PET hydrolases.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Filogenia , Estabilidade Enzimática , Hidrolases/metabolismo , Dissulfetos , Temperatura
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365240

RESUMO

Delineating cohesive ecological units and determining the genetic basis for their environmental adaptation are among the most important objectives in microbiology. In the last decade, many studies have been devoted to characterizing the genetic diversity in microbial populations to address these issues. However, the impact of extreme environmental conditions, such as temperature and salinity, on microbial ecology and evolution remains unclear so far. In order to better understand the mechanisms of adaptation, we studied the (pan)genome of Exiguobacterium, a poly-extremophile bacterium able to grow in a wide range of environments, from permafrost to hot springs. To have the genome for all known Exiguobacterium type strains, we first sequenced those that were not yet available. Using a reverse-ecology approach, we showed how the integration of phylogenomic information, genomic features, gene and pathway enrichment data, regulatory element analyses, protein amino acid composition, and protein structure analyses of the entire Exiguobacterium pangenome allows to sharply delineate ecological units consisting of mesophilic, psychrophilic, halophilic-mesophilic, and halophilic-thermophilic ecotypes. This in-depth study clarified the genetic basis of the defined ecotypes and identified some key mechanisms driving the environmental adaptation to extreme environments. Our study points the way to organizing the vast microbial diversity into meaningful ecologically units, which, in turn, provides insight into how microbial communities adapt and respond to different environmental conditions in a changing world.


Assuntos
Exiguobacterium , Extremófilos , Genômica , Filogenia , Proteínas
8.
Artigo em Inglês | MEDLINE | ID: mdl-38183603

RESUMO

Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.

9.
Environ Int ; 183: 108370, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091822

RESUMO

The Tibetan Plateau is a pristine environment with limited human disturbance, with its aerosol microbiome being primarily influenced by the monsoon and westerly circulations. Additionally, the diversity and abundance of airborne microorganisms are also affected by anthropogenic activities, such as animal farming, agriculture, and tourism, which can lead to increased risks to the ecosystem and human health. However, the impact of anthropogenic activities on airborne microbes on the Tibetan Plateau has been rarely studied. In this work, we investigated the airborne bacteria of areas with weak (rural glacier) and strong human disturbance (urban building), and found that anthropogenic activities increased the diversity of airborne bacteria, and the concentration of potential airborne pathogens. Moreover, airborne bacteria in rural aerosols demonstrated significant differences in their community structure during monsoon- and westerly-affected seasons, while this pattern was weakened in urban aerosols. Additionally, urban aerosols enriched Lactobacillus sp. (member of genus Lactobacillus), which are potential pathogens from anthropogenic sources, whereas rural aerosols enriched A. calcoaceticus (member of genus Acinetobacter) and E. thailandicus (member of genus Enterococcus), which are both speculated to be sourced from surrounding animal farming. This study evaluated the impact of human activities on airborne bacteria in the Tibetan Plateau and contributed to understanding the enrichment of airborne pathogens in natural and anthropogenic background.


Assuntos
Poluentes Atmosféricos , Microbiota , Humanos , Tibet , Poluentes Atmosféricos/análise , Efeitos Antropogênicos , Monitoramento Ambiental , Bactérias , Aerossóis/análise
10.
Environ Microbiol ; 26(1): e16550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38087431

RESUMO

Microbial pigments play a significant role in glacier albedo reduction, thereby contributing to accelerated glacier retreat. The Tibetan Plateau has experienced rapid glacier retreat in recent decades due to global warming, yet there is limited understanding of microbial pigment distribution in the region. Here, we investigated the pigment concentration and composition in cryoconite from four glaciers. Our results showed that chlorophylls were the dominant pigments in Palong No. 4 (PL) and Jiemayangzong (JMYZ) glaciers located in the south of the Tibetan Plateau, while carotenoids were dominant in Qiangyong (QY) and Tanggula (TGL) glaciers located in the central region. Additionally, the chlorophyll b to chlorophyll a ratio, which is an indicator of the algae-to-cyanobacteria ratio, was higher in PL and JMYZ compared to QY and TGL. By using Random Forest Regression and Structural Equation Modelling, we determined that the concentrations of chlorophyll a, chlorophyll b, and carotenoids were associated with autotrophic bacteria relative abundance, climatic factors, and a combination of bacterial and climatic factors, respectively. This study is the first to describe the distribution of microbial pigments in cryoconite from Tibetan glaciers, providing additional support on the influence of algal pigment on glacier retreat.


Assuntos
Cianobactérias , Camada de Gelo , Camada de Gelo/microbiologia , Tibet , Clorofila A , Carotenoides
11.
ISA Trans ; 143: 477-491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802676

RESUMO

Excessive temperature of battery pack causes the performance degradation, affecting the normal operation and safety of the electric vehicles (EVs). This paper proposes an ant colony optimization-fuzzy sliding mode control (ACO-FSMC) hierarchical strategy for the battery thermal management system (BTMS) of EVs. Ignoring the dynamic process of the pump and compressor leads to the deviation of the cooling efficiency of EVs. Therefore, a control-oriented BTMS model is established to describe the temperature dynamics of battery pack and coolant, considering driving current effect on the speed of pump and compressor. Then, a hierarchical optimization strategy is designed to realize the control of the battery cooling rate as well as the speed of the pump and compressor. The upper layer of controller use an ant colony optimization (ACO) to solve the reference speed of the pump and compressor while satisfying constraints of physical characteristics of actuators, aiming at reducing battery temperature deviation and saving energy of BTMS. Considering the nonlinearity of lower layer of BTMS caused by the disturbance of time-varying load torque, fuzzy sliding mode control (FSMC) is applied to control the speed of pump and compressor, in which an integral sliding surface is designed to reduce the influence of disturbance. In order to weaken the chattering of sliding mode control and reduce energy consumption, fuzzy controller is used to adjust the reaching law parameters of sliding mode surface. The simulation results show that compared with PID, the maximum temperature deviation of ACO-FSMC is reduced by 43%, and the energy consumption is reduced by 23%.

12.
Microbiome ; 11(1): 228, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848997

RESUMO

BACKGROUND: Glaciers harbor diverse microorganisms adapted to extreme conditions with high radiation, fluctuating temperature, and low nutrient availability. In glacial ecosystems, cryoconite granules are hotspots of microbial metabolic activity and could influences the biogeochemical cycle on glacier surface. Climate change could influence glacier dynamics by changing regional meteorological factors (e.g., radiation, precipitation, temperature, wind, and evaporation). Moreover, meteorological factors not only influence glacier dynamics but also directly or indirectly influence cryoconite microbiomes. However, the relationship of the meteorological factors and cryoconite microbiome are poorly understood. RESULTS: Here, we collected 88 metagenomes from 26 glaciers distributed in the Northern Hemisphere with corresponding public meteorological data to reveal the relationship between meteorological factors and variation of cryoconite microbiome. Our results showed significant differences in taxonomic and genomic characteristics between cryoconite generalists and specialists. Additionally, we found that the biogeography of both generalists and specialists was influenced by solar radiation. Specialists with smaller genome size and lower gene redundancy were more abundant under high radiation stress, implying that streamlined genomes are more adapted to high radiation conditions. Network analysis revealed that biofilm regulation is a ubiquitous function in response to radiation stress, and hub genes were associated with the formation and dispersion of biofilms. CONCLUSION: These findings enhance our understanding of glacier cryoconite microbiome variation on a hemispheric scale and indicate the response mechanisms to radiation stress, which will support forecasts of the ecological consequences of future climate change. Video Abstract.


Assuntos
Ecossistema , Microbiota , Camada de Gelo , Microbiota/genética , Família Multigênica , Mudança Climática
13.
Sci Bull (Beijing) ; 68(20): 2418-2433, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37739838

RESUMO

Mountain and polar glaciers cover 10% of the Earth's surface and are typically extreme environments that challenge life of all forms. Viruses are abundant and active in supraglacial ecosystems and play a crucial role in controlling the supraglacial microbial communities. However, our understanding of virus ecology on glacier surfaces and their potential impacts on downstream ecosystems remains limited. Here, we present the supraglacial virus genome (SgVG) catalog, a 15-fold expanded genomic inventory of 10,840 DNA-virus species from 38 mountain and polar glaciers, spanning habitats such as snow, ice, meltwater, and cryoconite. Supraglacial DNA-viruses were highly specific compared to viruses in other ecosystems yet exhibited low public health risks. Supraglacial viral communities were primarily constrained by habitat, with cryoconite displaying the highest viral activity levels. We observed a prevalence of lytic viruses in all habitats, especially in cryoconite, but a high level of lysogenic viruses in snow and ice. Additionally, we found that supraglacial viruses could be linked to ∼83% of obtained prokaryotic phyla/classes and possessed the genetic potential to promote metabolism and increase cold adaptation, cell mobility, and phenolic carbon use of hosts in hostile environmental conditions using diverse auxiliary metabolic genes. Our results provide the first systematic characterization of the diversity, function, and public health risks evaluation of mountain and polar supraglacial DNA viruses. This understanding of glacial viruses is crucial for function assessments and ecological modeling of glacier ecosystems, especially for the Tibetan Plateau's Mountain glaciers, which support ∼20% of the human populations on Earth.


Assuntos
Gelo , Microbiota , Humanos , Vírus de DNA/genética , DNA
14.
Environ Microbiol ; 25(12): 2822-2833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775503

RESUMO

Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.


Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Camada de Gelo , Plásticos , Carbono
15.
BMC Genomics ; 24(1): 508, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653415

RESUMO

BACKGROUND: Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS: In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS: The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.


Assuntos
Halorubrum , Temperatura , Genômica , Tamanho do Genoma , Aminoácidos
16.
ACS Omega ; 8(20): 18290-18298, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37251183

RESUMO

A series of Cr-based complexes 6-10 bearing aminophosphine (P,N) ligands Ph2P-L-NH2 [L = CH2CH2 (1), L = CH2CH2CH2 (2), and L = C6H4CH2 (3)] and phosphine-imine-pyrryl (P,N,N) ligands 2-(Ph2P-L-N=CH)C4H3NH [L = CH2CH2CH2 (4) and L = C6H4CH2 (5)] were prepared, and their catalytic properties were examined for ethylene tri/tetramerization. X-ray crystallographic analysis of complex 8 indicated the κ2-P,N bidentate coordination mode at the Cr(III) center and the distorted octahedral geometry of monomeric P,N-CrCl3. Upon activation by methylaluminoxane (MAO), complexes 7-8 bearing P,N (PC3N backbone) ligands 2-3 showed good catalytic reactivity for ethylene tri/tetramerization. On the other hand, complex 6 bearing the P,N (PC2N backbone) ligand 1 was found active for non-selective ethylene oligomerization, while complexes 9-10 bearing P,N,N ligands 4-5 only produced polymerization products. In particular, the high catalytic activity of 458.2 kg/(g·Cr·h), excellent selectivity of 90.9% (1-hexene and 1-octene combined), and extremely low PE content of 0.1% were obtained with complex 7 in toluene at 45 °C and 45 bar. These results suggest that rational control of P,N and P,N,N ligand backbones, including a carbon spacer and rigidity of a carbon bridge, can lead to the high-performance catalyst for the ethylene tri/tetramerization process.

17.
Front Microbiol ; 14: 1118892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970704

RESUMO

Microbial communities in freshwater lake sediments exhibit a distinct depth-dependent variability. Further exploration is required to understand their biodiversity pattern and microbial interactions in vertical sediments. In this study, sediment cores from two freshwater lakes, Mugecuo (MGC) and Cuopu (CP), on the Tibetan plateau were sampled and subsequently sliced into layers at a depth of every centimeter or half a centimeter. Amplicon sequencing was used to analyze the composition, diversity, and interaction of microbial communities. Results showed that sediment samples of both lakes could be clustered into two groups at a sediment depth of about 20 cm, with obvious shifts in microbial community compositions. In lake MGC, the richness component dominated ß-diversity and increased with depth, indicating that the microbial communities in the deep layer of MGC was selected from the surface layer. Conversely, the replacement component dominated ß-diversity in CP, implying a high turnover rate in the surface layer and inactive seed banks with a high variety in the deep layer. A co-occurrence network analysis showed that negative microbial interactions were prevalent in the surface layers with high nutrient concentrations, while positive microbial interactions were more common in the deep layers with low nutrient concentrations, suggesting that microbial interactions are influenced by nutrient conditions in the vertical sediments. Additionally, the results highlight the significant contributions of abundant and rare taxa to microbial interactions and vertical fluctuations of ß-diversity, respectively. Overall, this work deepens our understanding of patterns of microbial interactions and vertical fluctuation in ß-diversity in lake sediment columns, particularly in freshwater lake sediments from the Tibetan plateau.

18.
Sci Total Environ ; 862: 160888, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521618

RESUMO

Glacier foreland soils are known to be essential methane (CH4) consumers. However, global warming and increased glacier meltwater have turned some foreland meadows into swamp meadows. The potential impact of this change on the function of foreland soils in methane consumption remains unclear. Therefore, we collected Tibetan glacier foreland soils in the non-melting season from typical microtopography in swamp meadows (hummock and hollow). Three soil moisture conditions (moist, saturated, and submerged) were set by adding glacier runoff water. Soil samples were then incubated in the laboratory for two weeks at 10 °C and 20 °C. About 5 % of 13CH4/12CH4 was added to the incubation bottles, and daily methane concentrations were measured. DNA stable isotope probing (DNA-SIP) and high-throughput sequencing were combined to target the active methanotroph populations. The results showed that type Ia methanotrophs, including Crenothrix, Methylobacter, and an unclassified Methylomonadaceae cluster, actively oxidized methane at 10 °C and 20 °C. There were distinct responses of methanotrophs to soil moisture rises in hummock and hollow soils, resulting in different methane oxidation potentials. In both hummock and hollow soils, the methane oxidation potential was positively correlated with temperature. Furthermore, saturated hummock soils exhibited the highest methane oxidation potential and methanotroph populations, while submerged hollow soils had the lowest. This suggests that the in-situ hummock soils, generally saturated with water, are more essential than in-situ hollows, typically submerged in water, for alleviating the global warming potential of swamp meadows in the Tibetan glacier foreland during the growing season.


Assuntos
Camada de Gelo , Solo , Tibet , Temperatura , Oxirredução , Água , Metano , DNA , Microbiologia do Solo
19.
Environ Pollut ; 317: 120809, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470452

RESUMO

Antibiotic-resistance gene (ARG) is a biological pollutant and is globally distributed due to increased anthropogenic activities. ARGs in the cryosphere have received increased attention due to global warming, and ARGs in glaciers are predicted to be released into downstream ecosystems during glacier melting. In this study, ARG distribution and influential factors were investigated in 85 samples from 21 Tibetan glaciers, covering snow, ice, and cryoconite habitats. The results revealed ARGs against 29 antibiotics in Tibetan glaciers, dominated by tetracycline, bacitracin, macrolide, and fluoroquinolone resistance. ARGs in snow exhibited biogeographic patterns influenced by atmospheric circulation. Specifically, monsoon-dominated glaciers exhibited a significantly higher abundance of ARGs than the westerly-dominated glaciers, which could be associated with higher antibiotic usage in the Indian subcontinent. Of the 3241 metagenome-assembled genomes obtained, 36.8% of which were identified as ARG hosts and 33.8% were multidrug-resistant. In addition, 90 ARGs were linked to mobile genetic elements (MGEs). 90.9% and 9.1% of MGEs were identified as plasmid and phage in 45 MAGs carrying both ARGs and MGEs. Our study suggests a greater risk of ARGs being released from the monsoon-dominated glaciers, which were the glaciers that melt at high rates and thus need to be carefully monitored.


Assuntos
Antibacterianos , Camada de Gelo , Antibacterianos/farmacologia , Tibet , Ecossistema , Genes Bacterianos
20.
Microbiome ; 10(1): 215, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476562

RESUMO

BACKGROUND: Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Mariana Trench will provide a unique perspective to understanding the composition and distribution of environmental microbiomes on Earth. RESULTS: Here, we compared prokaryotic communities between Mount Everest and the Mariana Trench based on shotgun metagenomic analysis. Analyzing 25 metagenomes and 1176 metagenome-assembled genomes showed distinct taxonomic compositions between Mount Everest and the Mariana Trench, with little taxa overlap, and significant differences in genome size, GC content, and predicted optimal growth temperature. However, community metabolic capabilities exhibited striking commonality, with > 90% of metabolic modules overlapping among samples of Mount Everest and the Mariana Trench, with the only exception for CO2 fixations (photoautotrophy in Mount Everest but chemoautotrophy in the Mariana Trench). Most metabolic pathways were common but performed by distinct taxa in the two extreme habitats, even including some specialized metabolic pathways, such as the versatile degradation of various refractory organic matters, heavy metal metabolism (e.g., As and Se), stress resistance, and antioxidation. The metabolic commonality indicated the overall consistent roles of prokaryotes in elemental cycling and common adaptation strategies to overcome the distinct stress conditions despite the intuitively huge differences in Mount Everest and the Mariana Trench. CONCLUSION: Our results, the first comparison between prokaryotes in the highest and the deepest habitats on Earth, may highlight the principles of prokaryotic diversity: although taxa are habitat-specific, primary metabolic functions could be always conserved. Video abstract.


Assuntos
Ciclismo , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...